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Abstract

Ozone (O3) pollution has surfaced as a significant threat to urban air quality in contemporary years. 
The precise and efficient forecast of ozone levels is fundamental in the mitigation and management of 
ozone pollution. Even though the air quality monitoring network offers useful multi-source pollutant 
concentration data for predicting ozone levels, existing models still grapple with issues arising from 
outlier and redundant sites influencing prediction precision, and cross-contamination between different 
pollutants. Also, the non-linear and volatile nature of monthly runoff makes accurate prediction more 
complex, provide a more granular and timely view of atmospheric flow variations. In this research, we 
introduce a hybrid model that unites Variational Modal Decomposition (VMD), particularly useful for 
separating mixed signals or extracting meaningful patterns from noisy or complex data, Convolutional 
Long Short-Term Memory Neural Network (CNN-LSTM) is designed for processing sequences of data 
with grid-like structures, such as images or video frames. CNN-LSTMs use convolutional operations 
to capture spatial patterns and LSTM units to model temporal dependencies, making them effective  
for tasks like video analysis, image sequence prediction, and spatiotemporal data processing,  
and VMD-CNN-LSTM to counter these issues. We commence by deconstructing the historical data 
series from the Nanjing air quality monitoring stations using VMD. Then, the Ensemble Empirical Mode 
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Introduction

The epoch of the Industrial Revolution catalyzed 
a massive leap in global industries and economies, 
unfortunately, along with an amplification of air 
pollutants from various industrial sources. The 
expansion and severity of worldwide pollution escalated, 
drawing increased focus [1-4]. An increase in air 
pollutant levels, coupled with the deteriorating state of 
the global environment, significantly impacts human 
health and overall quality of life. This underscores the 
urgent imperative to reduce pollutant concentrations 
and improve air quality [5-8]. Although numerous 
environmental protection policies have been introduced, 
alongside growing global awareness of atmospheric 
pollution reduction, excessive atmospheric pollutant 
concentrations persist, and environmental degradation 
remains a critical issue [9-10].

Air quality is principally impacted by pollutants like 
carbon monoxide (CO), carbon dioxide (CO2), ozone 
(O3), nitrogen dioxide (NO2), sulfur dioxide (SO2),  
and particulate matter (PM2.5, PM10). Among these, 
ozone plays a crucial role in the human health and 
ecological environment. Ozone is beneficial in small 
amounts, with a safe concentration at 0.2 mg/m3 [11], 
while a concentration above 100 μg/m3 is considered 
unsafe. The increase in ozone concentrations over the 
years can be attributed to industrial plant emissions 
and increased solar intensity [12, 13]. Elevated ozone 
concentrations can severely harm human health, 
particularly the respiratory system, and negatively 
impact the ecological environment, causing a decrease 
in crop yields and damaging agriculture and forestry 
[13].

The importance of ozone pollution prediction spans 
several areas:

 – Public Health: Ozone pollution, a detrimental 
air pollutant, can harm human health, causing 
respiratory problems, aggravating asthma and other 
respiratory diseases, and increasing the risk of 
cardiovascular issues. Accurate ozone prediction 
enables timely warnings and necessary measures to 
protect public health. 

 – Environmental Impact: Ozone pollution affects not 
just human health but the environment as well. It can 
harm vegetation, reducing crop yields and disrupting 
ecosystems. Predicting ozone levels allows for 
proactive measures to mitigate these environmental 
impacts. 

 – Policy and Regulations: Ozone pollution prediction 
aids in shaping policies and regulations aimed at 
lowering pollution levels. It helps policymakers 
identify sources of pollution and develop targeted 
interventions. 

 – Urban Planning and Infrastructure: Ozone prediction 
informs decisions regarding urban planning and 
infrastructure development. By understanding the 
spatial and temporal patterns of ozone pollution, 
city planners can minimize exposure to high ozone 
levels. 

 – Economic Implications: Ozone pollution can have 
significant economic consequences, impacting 
agricultural productivity and incurring health-related 
costs. Accurate prediction of ozone pollution enables 
better resource allocation and planning.
It is essential to protect the ecological environment 

while developing material civilization [14] as the 
sustainable coexistence of both ensures long-
term prosperity for present and future generations.  
As awareness of environmental protection improves and 
concerns about air pollution status grow, establishing  
a scientific and effective atmospheric pollutants control 

Decomposition (EEMD) algorithm is applied to the VMD residual to acquire characteristic components 
or Intrinsic Mode Functions (IMFs). Each IMF is independently trained via LSTM to produce predictions 
for each component. Ultimately, we secure the final prediction by linearly superimposing the predictions 
from all components. The LSTM’s adaptive learning ability and memory function make it ideal for 
managing long-term data, leading to more precise predictions. To evaluate the prediction performance 
on the test set, our VMD-CNN-LSTM model is compared with other models such as EMD-LSTM, 
EMD-CNN-LSTM, and VMD-LSTM using root mean square error (RMSE), mean absolute error 
(MAE), and Nash coefficient (NSE). Our findings reveal that the VMD-CNN-LSTM model surpasses 
the other models, displaying higher prediction precision and lower errors. Importantly, the model shows 
enhanced fitting of peak and valley values, thus providing a promising strategy for monthly runoff 
prediction. In this research, we’ve put forth a unique hybrid model, VMD-CNN-LSTM, for monthly 
ozone prediction. By amalgamating VMD, CNN, and LSTM, our model effectively tackles challenges 
associated with outlier and redundant sites, cross-pollution between pollutants, and nonlinearity makes 
it hard to model the intricate runoff relationships accurately, while instability results in unpredictable 
fluctuations, both of which impact the accuracy and reliability of monthly runoff predictions and make 
it more impactful in Environmental Management, Energy Optimization, Agriculture, Urban Planning, 
Climate Resilience
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mechanism becomes critical [15-16]. Air pollution 
prediction can effectively prevent serious pollution 
events, reduce the damage from heavily polluted 
weather, and minimize economic losses caused by 
severe air pollution [17-18].

Research has focused on ozone (O3) forecasting [19]. 
Efforts have been made to enhance the accuracy of O3 
forecasting using classic methods such as regression 
analysis, time series analysis, autoregressive moving 
average models, and gray models [20, 21]. Despite 
their advantages, these methods often fail to capture 
nonlinear patterns prevalent in ozone data [22-24]. 
The advent of artificial intelligence (AI) technology 
has introduced intelligent methods for air quality and 
ozone forecasting [25]. Techniques such as expert 
systems, machine learning, and fuzzy reasoning have 
been utilized in this domain [26-30]. Among them, 
artificial neural networks (ANNs), capable of handling 
nonlinear factors, are often chosen for ozone forecasting 
[31]. Artificial Neural Networks (ANNs) mirror  
the human brain’s structure, comprised of several  
layers of interconnected neurons, each governed by 
activation functions. This design permits ANNs to 
navigate intricate data, notably nonlinear data, that 
traditional ozone forecasting techniques struggle to 
handle [32-35].

Back-propagation algorithm (BP), the dominant 
method among ANN models, grapples with sluggish 
convergence and protracted iteration cycles [36], 
When discussing the challenges of back-propagation 
algorithms in Artificial Neural Network (ANN) models, 
it’s important to note that ‘convergence speed’ refers to 
how quickly the algorithm reaches a stable and accurate 
solution during training. This impacts the efficiency 
of the learning process. Additionally, ‘iteration cycles’ 
indicate the number of times the algorithm updates 
its weights and biases by iteratively adjusting them 
during training. Efficiently managing these aspects is 
crucial for optimizing the training process in ANNs. 
Various refinements have been proposed to counter 
these limitations. For instance, Huang et al. employed 
Particle Swarm Optimization (PSO) to enhance the BP 
algorithm, boosting the convergence speed in air quality 
forecasting [37]. Likewise, Yang et al. constructed a BP-
ANN model for PM2.5 forecasting, yielding satisfactory 
outcomes [38]. Qiao et al. employed a refined ant colony 
algorithm in conjunction with BPNN to predict peak 
load in Chengdu, showcasing a marked improvement 
in prediction accuracy compared to conventional 
regression models [39]. Ya et al. underscored the 
prowess of Convolutional Neural Networks (CNNs) 
in extracting nonlinear data features, emphasizing 
their advanced feature extraction capabilities [40], 
Convolutional Neural Networks (CNNs) are a class 
of deep learning models designed for processing 
grid-like data such as images. They excel at feature 
extraction through the use of specialized layers called 
‘convolutions.’ These convolutions systematically scan 
the input data, identifying patterns, edges, textures, and 

more. This hierarchical feature extraction allows CNNs 
to automatically learn and represent complex features, 
making them highly effective for image analysis, object 
recognition, and other tasks. Their ability to capture 
spatial relationships and hierarchies in data has made 
CNNs a go-to choice for computer vision applications. 
Deep learning approaches, such as Recurrent Neural 
Networks (RNNs) and their variants like Long Short-
Term Memory (LSTM) and Gated Recurrent Unit 
(GRU), have attracted interest for their performance in 
time series prediction tasks, particularly in deciphering 
underlying patterns in larger, more intricate datasets 
[41-43]. While RNNs have traditionally been employed, 
they’re hampered by the vanishing gradient problem, 
which LSTM effectively resolves [44]. LSTM employs 
gated neural units output gates, input gates and 
forgetting gates,  to retain contextual data and extract 
long-term features from time series data [45].

Numerous studies have harnessed LSTM for ozone 
forecasting, demonstrating its efficacy. For instance, 
Zhang et al. developed an ozone prediction methodology 
based on LSTM, delivering encouraging forecasting 
results [46]. Pak et al. presented a blend of CNN and 
LSTM for short-term ozone forecasting, using CNN to 
draw out high-level features and enhance accuracy when 
the LSTM input sequence is long [47]. This synergy 
of CNN and LSTM has been shown to be a superior 
model for predicting air quality time series data [48, 49]. 
The amalgamation of AI methods, particularly ANNs 
and deep learning models like LSTM, has progressed 
the ozone forecasting field. These models excel at 
deciphering the nonlinear characteristics of ozone data, 
enhancing prediction accuracy against traditional linear 
analysis methods. Further investigation into hybrid 
models, merging techniques such as CNN and LSTM, 
might yield improved results in forecasting air quality 
and ozone levels. The ongoing advancement and honing 
of AI-based techniques will contribute to more precise 
and reliable ozone forecasting, aiding in the control and 
reduction of air pollution.

To overcome the restrictions of traditional artificial 
intelligence models, series decomposition methods are 
utilized to process time series signals. Signal processing 
methods play a vital role in combined models and 
directly impact the model’s predictive performance. 
Standard sequence preprocessing techniques include 
Wavelet Decomposition (WD) [50] and Empirical Mode 
Decomposition (EMD) [51]. The EMD decomposition 
algorithm doesn’t rely on any basis function and 
differs significantly from wavelet decomposition. It’s 
particularly efficient at handling non-stationary and 
nonlinear complex signals. Li et al. [52] put forward 
the AQI forecasting algorithm using Variational Mode 
Decomposition (VMD) and improved the VMD results 
by employing bald eagle search to propose a BVMD 
refined model for better outcomes. The research 
conducted in Xi’an, Beijing, and Shanghai shows that 
the proposed method is superior to other decomposition 
techniques.
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Consequently, VMD dynamically dissects 
the relevant components associated with each 
center frequency within the frequency spectrum, 
demonstrating superior precision in decomposition. 
The VMD method’s ability to decompose data has 
proven particularly beneficial in feature selection for 
predictive models and has seen successful applications 
in forecasting trends in asset prices within financial 
and energy markets [53]. Therefore, this study adopts 
the VMD decomposition approach as the main tool for 
decomposition in our modeling process.

In this paper, we use CNN-LSTM to directly 
process deformation monitoring time series data in 
the time domain and extract the data dependence 
information therein. Combined with VMD, we propose 
a deformation prediction model based on VMD-CNN-
LSTM. Initially, VMD decomposes the deformation 
monitoring data sequence into a set of relatively stable 
intrinsic modal components with different frequency 
scale characteristics, reducing the influence of 
nonlinearity and non-stationarity, and easing prediction; 
the optimal number of modal components in VMD is 
determined by calculating the permutation entropy of 
the decomposition margin; then CNN-LSTM is directly 
employed to predict each modal component, and mine 
the multi-scale features in the original data according 
to the characteristics of different modal components; 
finally, the predicted values of each component are 
overlaid to obtain the final result.

The primary contributions of this paper are:  
• Complexity and environmental variation cause the 
Ozone (O3) data series to have a high degree of variation. 
The VMD-CNN-LSTM model is used to analyze 
complex time series data of Ozone (O3) by decomposing 
it into multiple sub-signal components in the frequency 
domain using the Variational Mode Decomposition 
(VMD) technique. The VMD decomposition results in 
the original sequence, various VMD components, and 
residual items. The residual series is further decomposed 
using the Ensemble Empirical Mode Decomposition 
(EEMD) technique and combined with the LSTM model 
for predictive analysis.

In a study comparing different machine learning 
models using Ozone data from four Chinese provinces, 
the proposed VMD-CNN-LSTM model outperformed 
other models. The performance was evaluated using 
various indicators such as Mean Absolute Error (MAE), 
Mean Squared Error (MSE), and Root Mean Squared 
Error (RMSE), indicating the superior predictive 
capability of the VMD-CNN-LSTM model for Ozone 
prediction in this particular context.

The paper is structured as follows: Section 2 provides 
a brief introduction to the hybrid model construction. 
Section 3 presents results and analysis for Nanjing city. 
Section 4 provides discussion. The final section draws 
conclusions.

Materials and Methods

Before we delve into the construction of the VMD-
CNN-LSTM hybrid model for predicting changes in 
ozone (O3) levels, it’s crucial to briefly describe the 
components of this combined model: Variational Mode 
Decomposition (VMD) technology and the CNN 
combined with LSTM neural network.

Variational Mode Decomposition (VMD)

Variational Mode Decomposition (VMD) is an 
advanced signal processing methodology that has 
garnered significant interest recently. It’s a data-
oriented strategy utilized to break down time series 
data into multiple modal functions or components, each 
exhibiting distinct frequency behaviors. VMD integrates 
the principles of variational optimization and mode 
decomposition, allowing it to effectively identify the 
fundamental oscillatory components within a given time 
series. The VMD algorithm commences by iteratively 
breaking down the input signal into multiple modes 
through the resolution of an optimization problem.  
This optimization process seeks the optimal 
decomposition that reduces both the likeness between 
adjacent modes and the departure from the original 
signal. By progressively updating the modes, VMD 
systematically segregates the signal into different 
components, each symbolizing a specific oscillatory 
mode.

One of VMD’s primary strengths is its capability 
to process non-stationary and multi-component time 
series signals. Unlike conventional decomposition 
methodologies, such as Fourier or wavelet analysis, 
VMD adapts to the local traits of the data, offering  
a more precise representation of the underlying 
oscillatory components. Additionally, VMD can manage 
signals with irregular or non-uniform sampling rates, 
making it an apt fit for a broad spectrum of time series 
applications.

The decomposed modes obtained from VMD can be 
individually analyzed or amalgamated to reconstruct the 
original signal. This versatility enables researchers and 
practitioners to study individual frequency components, 
recognize hidden patterns, and execute advanced 
analyses on the decomposed modes. Additionally, VMD 
has been effectively merged into various applications, 
such as signal denoising, anomaly detection, and 
time series forecasting, highlighting its efficacy in 
augmenting our understanding and prediction of 
complex dynamic systems. The process of signal 
decomposition through VMD is also the solution to the 
variational constraint problem. The model expression 
for this variational constraint problem is illustrated in 
Equation (1).

 (1)  
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series data, enabling the subsequent LSTM model 
to retain more pertinent information while omitting 
redundant data. Both convolutional layers feature an 
identical number of convolution kernels, meaning 
that the dimensions of their output features are the 
same. The second convolution layer delves deeper into 
the relationships among different features, thereby 
fortifying the connections among the extracted features 
and enhancing the precision of the forecast results.

The Long Short-Term Memory (LSTM) module, a 
type of recurrent neural network (RNN), is explicitly 
designed to manage long-term dependencies and detect 
sequential patterns in time series data. Its application 
spans a variety of domains, including natural language 
processing, speech recognition, and time series 
forecasting.

The LSTM module comprises multiple memory 
cells, storing information over time. This enables the 
network to retain crucial context and effectively handle 
elongated sequences. Each memory cell consists of three 
primary components:

Cell State (Ct): The cell state serves as the LSTM 
module’s “memory”. It carries information throughout 
the sequence and selectively retains or discards data via 
gates.

Input Gate (i): The input gate governs the influx of 
information into the cell state. It identifies which parts 
of the input should be stored in the cell state, updating it 
with new relevant information.

Forget Gate (f): The forget gate decides which 
parts of the previous cell state’s information should be 
discarded. It regulates how much the previous cell state 
should influence the current one.

Moreover, the LSTM module includes an output 
gate (o) that manages the flow of information from the 
cell state to the module’s output. It determines which 
parts of the cell state should be utilized to generate 
the module’s output. The operations within an LSTM 
module are executed using various activation functions 
and weight matrices. These computations involve 
element-wise operations, such as the sigmoid function 
(σ) and hyperbolic tangent function (tanh), which infuse 
non-linearity and allow the LSTM to model intricate 
relationships in the data.

The LSTM module is designed to alleviate the 
vanishing gradient issue, which can arise in traditional 
RNNs when gradients decrease as they propagate 
through long sequences. By selectively retaining and 
updating information through the gates, LSTM can learn 
long-term dependencies more efficiently and prevent 
the loss of relevant data. The forget gate, denoted as 
ft, controls the network’s memory function and can be 
expressed as follows:

                 (4)

where σ represents the sigmoid function, which can be 
written as:

In the given equation, {uk}: = {u1,…,uk} represents 
the modal component VMF obtained after the 
decomposition process; {wk}: = {w1,…,wk} are the 
center frequencies that correspond to each VMF 
respectively. * denotes the convolution symbol; ∂_t 
signifies the partial derivative with respect to time t, δ(t) 
stands for the impulse function; f is the original input 
signal. By incorporating the Lagrange multiplier λ(t) and 
the quadratic penalty factor α, the constraint variational 
problem is transformed into an unconstrained variational 
problem, which can be represented in the following 
format:

 (2)

The quadratic penalty factor α is utilized in the 
equation to ensure the precision of signal reconstruction, 
especially when there is Gaussian noise present. 
By incorporating the quadratic penalty factor, the 
variational problem can effectively control the impact 
of noise and enhance the accuracy of reconstructing the 
original signal. This regularization term plays a crucial 
role in balancing the fidelity of the reconstructed signal 
and the complexity of the decomposition components, 
ultimately improving the overall quality of the signal 
reconstruction process. It helps to minimize the impact 
of noise on the reconstructed signal. Additionally, 
the Lagrangian operator is utilized to enforce strict 
constraints on the optimization problem.

To solve the constrained variational problem 
described in equation (2), an iterative search method 
called the Alternate Direction Method of Multipliers 
(ADMM) can be applied. ADMM aims to find the saddle 
point of the Lagrangian function by iteratively updating 
the variables. This iterative process allows for the 
determination of the optimal solution for the variational 
problem, including the VMFuk (variational mode 
function) and center frequency. By employing ADMM, 
the optimization problem can be effectively solved, and 
the desired solution that satisfies the given constraints 
can be obtained. This approach enhances the accuracy 
of the variational problem solution and facilitates the 
extraction of VMFuk and the corresponding center 
frequency. The expressions of wk are:

            (3)

CNN and Long Short-Term Memory (LSTM) 
Neural Network

The CNN model comprises two 1-dimensional 
convolutional layers. The initial convolution layer 
extracts valuable new insights from the original time 
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                          (5)

The input gate it is another important gate, and has a 
similar form to the forget gate ft:

                 (6)

In the formula, Wi and bi represent the weight and 
bias values, but these values are different from the 
values of the forget gate. 

LSTM (Long Short-Term Memory) is a type of 
recurrent neural network (RNN) architecture that offers 
several benefits for prediction tasks:

Capturing Long-Term Dependencies: LSTM is 
specifically designed to handle long-term dependencies 
in sequential data. It overcomes the vanishing gradient 
problem of traditional RNNs by using a memory cell 
that can store and retrieve information over long time 
lags. This makes LSTM well-suited for capturing 
complex patterns and dependencies in time series data, 
allowing it to make accurate predictions.

Handling Variable-Length Sequences: LSTM can 
efficiently handle variable-length input sequences. It 
automatically learns to adapt its memory cell to different 
time steps, making it flexible for predicting sequences 
of different lengths. This is particularly useful for 
applications where the length of the input sequence may 
vary, such as natural language processing or financial 
time series analysis.

Memory and Context Retention: The memory cell in 
LSTM allows it to retain information from earlier time 
steps, enabling it to capture context and dependencies 
over extended periods. This ability is essential for 
accurate prediction in time series data, as historical 
context often plays a crucial role in determining future 
patterns.

Learning Non-Linear Relationships: LSTM models 
have non-linear activation functions that enable them to 
learn complex non-linear relationships in the data. This 
makes them effective for capturing intricate patterns 
and trends that may not be easily captured by traditional 
linear models.

Handling Noisy Data: LSTM models can handle 
noisy data by learning to filter out irrelevant information 
and focus on relevant patterns. The memory cell allows 
the model to selectively retain important features while 
disregarding noisy or irrelevant inputs, leading to 
improved prediction accuracy in the presence of noise.

Proposed VMD-CNN-LSTM Model

 Ozone behavior is characterized by its non-stationary 
nature, nonlinearity, and other intricate properties. 
Predicting ozone levels accurately using a single 
technique proves to be a complex task. Nonetheless, the 
technique known as Variational Mode Decomposition 
(VMD) has shown promise in effectively breaking down 
complicated ozone signals into numerous simplified 
modal components. By applying prevalent prediction 
methodologies to each modal component extracted 
via VMD decomposition, a notable improvement in 
prediction accuracy can be observed. Prior studies 
have mainly concentrated on the modeling of modal 
components estimated through VMD decomposition, 
often overlooking the intricate information within the 
residual terms post-decomposition.

To overcome this issue, a hybrid model of 
Convolutional Neural Networks (CNN) and Long 
Short-Term Memory (LSTM) neural networks can be 
deployed. Both CNN and LSTM networks are adept at 
capturing autocorrelation within time series data and 
possess the ability to remember long-term patterns. 
By merging the VMD decomposition method with the 

Fig. 1.  Hybrid Forecasting Model: VMD-CNN-LSTM for Improved Time Series Prediction.
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CNN-LSTM network structure, the prediction accuracy 
of ozone levels can be substantially amplified. This 
integrated approach enables separate modeling and 
prediction of each modal component, harnessing the 
uniformity extracted by VMD. Moreover, the complex 
information within the residual terms is processed 
by the CNN-LSTM network, effectively recognizing 
temporal dependencies and long-term patterns.

Here’s an outline of the comprehensive modeling 
steps of the proposed methodology:

Step 1: VMD Decomposition The initial 
ozone sequence is deconstructed using the VMD 
decomposition technique. This yields individual modal 
components, referred to as Variational Mode Functions 
(VMFs). Furthermore, the total VMF data is deducted 
from the original time series data, resulting in the 
residual term post-VMD decomposition.

Step 2: Normalization and Data Splitting The 
disassembled VMF components are normalized, and 
suitable training and testing samples are chosen. The 
normalized VMFs then serve as the input to the CNN-
LSTM model. The CNN component of the model 
enhances the series prediction via convolutional 
operations, and the LSTM module is utilized to predict 
each Intrinsic Mode Function (IMF) subsequence within 
the VMFs individually. The predictions for each VMF 
component subsequence are derived.

Step 3: Residual Term Prediction The residual 
term obtained from VMD decomposition undergoes 
further prediction. Initially, CNN is employed to 
enhance the series prediction by applying convolutional 
operations to the residual term. Subsequently, LSTM 
is used to predict each subsequence within the residual 
term. The prediction outcomes of these subsequence 
predictions are combined to yield the final prediction 
result for the residual item.

Step 4: Aggregation of Prediction Results To 
obtain the final prediction result for the original 
sequence, the predictions derived from each VMD 
component and the residual item are aggregated. This 
involves summing up the predictions of each VMD 
component and the residual item obtained after VMD 
decomposition. By overlaying these predictions, the 
ultimate prediction result for the original sequence is 
obtained. By adhering to these modeling steps, the 
proposed methodology aims to achieve accurate ozone 
prediction by effectively deconstructing the original 
sequence, individually training each component using 
CNN-LSTM, and amalgamating the predictions to 
generate the final result.

Complete flow of the implementation is shown in 
Fig. 1. 

Results

In this part, the areas selected for data collection and 
the results of the suggested approach’s execution will be 
discussed.

Area of Study
 
Our research was conducted in Nanjing, a historical 

yet modern sub-provincial city in China, serving as 
the capital of Jiangsu Province. The city, as of 2019, 
is divided into 11 administrative districts and spans 
a total area of 6,587 square kilometers, comprising 95 
streets and 6 towns. Home to roughly 9,314,685 people 
by the end of 2020, Nanjing pulses with the energy of 
a thriving urban hub. The climate here is subtropical 
monsoon with average annual rainfall of 1200 mm, 
leading to four distinct and unique seasons.

The seasons in Nanjing have their specific attributes. 
Spring welcomes bright sunny days, monsoons come 
with plenty of rainfall, summers are generally hot, 
and autumn is dry with mild temperatures. Winters in 
the city are notably cold and dry. Each season brings 
its own allure for tourists, who are also drawn by the 
city’s historical significance and its various cultural and 
natural attractions, including ancient landmarks and 
local cuisine.

Data on Ozone 

This paper pays particular attention to the daily 
average datasets from nine ozone monitoring stations in 
Nanjing. The data covers the period from January 2018 
to December 2021 for each station. The assumption is 
made that the ozone concentration at each station follows 
a normal distribution. A suite of statistical measures, 
including minimum and maximum average values for 
each station, mean, median, and standard deviation (SD) 
of ozone concentrations, were computed to get a better 
picture of air pollution levels.

To illustrate the regional variation in air pollution 
levels, a geographic information system (GIS) tool 
named ArcGIS (version 10.5) was employed. This 
software, using spatial data, facilitates the creation 
of graphical maps. By including the geographical 
coordinates of the monitoring stations and corresponding 
ozone concentration values, maps demonstrating the 
distribution of air pollution levels across the Nanjing 
region were generated. For the modeling and prediction 
stages, data from 2018 to 2020 was used to train the 
prediction model. The remaining data was utilized 
for testing and validation to evaluate the developed 
prediction model’s accuracy and performance.

Validation Techniques and Comparative 
Algorithms

 
To evaluate the effectiveness of the model’s 

predictions, three evaluation indicators have been 
selected: root mean square error (RMSE), mean absolute 
error (MAE), and mean absolute percentage error 
(MAPE). These indicators will provide valuable insights 
into the accuracy and performance of the forecasting 
model. The calculation is as follows:
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                   (7)

                      (8)

                    (9)

                            (10)

In the formula, yi represents the actual value of the 
station ozone, and ŷi represents the predicted value of 
the station ozone. The variable n represents the size of 
the test sample, and i denotes the sequential number of 
the test sample point. 

To evaluate the benefits of the proposed model, a 
comparative analysis is conducted using four direct 
prediction models, namely LSTM, GRU, BiLSTM, and 
Bi-GRU. In addition, three time series models, including 
ARIMA, SARIMA, and Prophet, are employed. 
Furthermore, an ablation study of the proposed 
approach, EEMD-LSTM, is performed by excluding 
VMD from the model. 

Series Decomposition and Forecasting Results

The Variational Mode Decomposition (VMD) 
technique is used to break down the original yield 

sequence into various VMF components and residual 
elements. Subsequently, the residual component and the 
series undergo a second round of decomposition using 
the Ensemble Empirical Mode Decomposition (EEMD). 
This decomposed data is then integrated with the Long 
Short-Term Memory (LSTM) model for predictive 
analysis. To evaluate the proposed method, we contrast 
it with the EEMD-LSTM model, which combines 
EEMD with LSTM technology.

To compare and analyze the effectiveness of the 
various combination models, we take into account the 
Mean Absolute Error (MAE), Mean Squared Error 
(MSE), Mean Absolute Percentage Error (MAPE), 
and R-squared (R2) values. Fig. 2 presents the average 
outcomes obtained from all the Nanjing stations  
and provides a comparative analysis of various models. 
The MAE values for the models show the lowest 
error for the VMD-CNN-LSTM model, affirming its 
exceptional prediction accuracy.

Similar patterns are observed for the MSE, MAPE, 
and R2 values, with the VMD-CNN-LSTM model 
consistently outperforming the other models. In the 
VMD-CNN-LSTM model, the MAE and MSE values 
are reduced by 46% and 50% respectively, and the 
MAPE value is reduced by 4% compared to the EEMD-
LSTM model. Furthermore, the R2 value increased by 
4%, indicating an excellent match between true and 
predicted values. The results highlight the exceptional 
performance of the proposed VMD-CNN-LSTM model 
in accurately forecasting ozone data, surpassing other 
models, including EEMD-LSTM.

Fig 2. Comparison of different algorithms with proposed model of Nanjing a) MAE, b) MSE,  c) MAPE, d) R2.



Hybrid Climate Forecasting: Variational Mode... 1129

 The value of R2 is a reliability coefficient between 
zero and one hundred (or 0 and 1.0). A higher R2 
indicates a more reliable model. Due to the significance 
of both model stability and flexibility, optimizing R2 is 
not the goal. To achieve optimal results in comparing the 
adjusted R2 with the original R2 value, it is desirable for 
the two numbers to be relatively close. Upon comparing 
the R2 values of all prediction models, it is evident from 
Fig. 3 that the VMD-CNN-LSTM approach yielded the 
highest value (R2 = 0.98).

Fig. 4 offers a visual comparison of 150 days of 
observational data, underscoring the areas where our 
prediction model aligns with the actual values. Given 

the data’s non-linear and dynamic nature, our prediction 
model’s accuracy improves over time, increasingly 
aligning with the actual figures. The results further 
show that while LSTM models are adept at memorizing 
long-term patterns and generally provide accurate 
predictions, they fall short when it comes to complex 
Ozone data. Decomposing complex time-series data into 
subseries with varied frequencies via EEMD enhances 
prediction accuracy across all stations. When comparing 
performance across stations, LSTM appeared to 
underperform compared to GRU when inappropriate 
settings were used. The accuracy of the predictions was 
further improved by applying VMD to discern denoising 

Fig. 3. Comparing Actual and Predicted Values for All Algorithms a) ARIMA, b) SARIMA, c) Prophet, d) LSTM, e) GRU, f) BI-LSTM, 
g) BI-GRU, h) EEMD-LSTM, and i) VMD-CNN-LSTM.

Fig. 4. Visual comparison of 100 days prediction results of all the methods.
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patterns within the data for LSTM. The VMD-CNN-
LSTM model excelled in predicting short-term Ozone 
levels, demonstrating its applicability in various other 
scenarios. 

Discussion

This investigation delves into enhancing the 
accuracy of ozone predictions through the application 
of decomposition techniques. The complexity of 
ozone series can hinder the efficiency of direct 
prediction models. Several decomposition methods, 
such as Ensemble EMD (EEMD), Empirical Mode 
Decomposition (EMD), and Variational Mode 
Decomposition (VMD), have been tried, but their 
effectiveness is often limited due to modal aliasing and 
performance inefficiencies.

Variational Modal Decomposition (VMD) has proven 
to be a promising method for successful decomposition 
of ozone series, thereby mitigating issues present in 
previous techniques. After the initial decomposition, 
the Intrinsic Mode Function (IMF) components that 
remain complex can be further broken down, leading 
to a reduction in the complexity of the ozone series. 
Nevertheless, identifying which IMF components have 
high complexity is a daunting task.

Research conducted by Wang et al. [54] performed a 
straightforward decomposition of the IMF components, 
revealing that the primary component displayed the 
most complexity. In this research, VMD is used to 
measure the complexity of each IMF component and set 
quantitative criteria for choosing complex components. 
While VMD adeptly resolves modal aliasing and 
performance inefficiencies, it is crucial to properly 
predetermine the decomposition level and penalty factor 
for achieving optimal decomposition results.

Studies by Wu et al. [55] have shown that the use 
of series decomposition in comprehensive frameworks 
can greatly improve model predictive performance. For 
instance, an EEMD-LSTM model applied to pollution 
data from Anyang demonstrated marked improvements 
in terms of MAE, RMSE, and MAPE over the LSTM 
model. Other models, like VMD-SE-LSTM and EEMD-
LSTM, also exhibited good prediction performance, 
prediction stability, and early warning accuracy across 
various datasets. These observations are consistent with 
this research, which also found EEMD-LSTM superior 
to LSTM following series decomposition.

An EMD decomposition model proposed by Huang 
et al. [56, 57] was utilized to filter noise from air quality 
data, leading to the extraction of IMF components. 
Using an EMD-IPSO-LSTM air quality prediction 
model, each IMF component was then modeled, 
resulting in improved prediction accuracy and superior 
model fitting compared to LSTM and EMD-LSTM 
models. Our research proposes a similar strategy, using 
EEMD, which also yields improved results compared to 
LSTM and EEMD-LSTM.

Our study’s methodology effectively predicts 
ozone levels, albeit with some limitations that warrant 
attention. The available experimental data was 
inadequate due to constraints in the experimental 
setup, and further refinement is needed. Additionally, 
our study lacked data on meteorological factors near 
the monitoring stations, which could have significantly 
bolstered our model’s performance.

The newly proposed VMD-CNN-LSTM model in 
this research brings several advantages to the prediction 
of monthly ozone levels:
 – Enhanced Prediction Accuracy: By decomposing 

historical data series with the VMD technique, the 
VMD-CNN-LSTM model seeks to improve the 
prediction accuracy of monthly ozone levels.

 – Management of Outliers and Redundant Sites: Ozone 
prediction often suffers from outliers and redundant 
data from multi-source pollutant concentration 
monitoring. The VMD-CNN-LSTM model 
minimizes these influences by decomposing the data 
and training each component individually.

 – Dealing with Cross-Interference: Cross-interference 
between different pollutants needs consideration 
when predicting ozone levels based on multi-
source data. This model effectively manages this 
interference by separately training each decomposed 
component.

 – Long-Term Memory and Adaptive Learning: The 
LSTM part of the model demonstrates strong 
adaptive learning and memory capabilities. This 
allows the model to learn effectively from long-term 
data and accurately predict ozone levels.

 – Comparative Performance: A comparison with other 
models such as EMD-LSTM, EMD-CNN-LSTM, 
and VMD-LSTM was carried out. The VMD-
CNN-LSTM model outperformed these models 
in prediction accuracy and had lower error rates, 
proving its effectiveness in capturing extreme ozone 
levels.

Conclusions

While soft computing-based prediction models strive 
to improve accuracy, many often neglect the critical 
step of data preprocessing. Raw data is often filled 
with noise and superfluous information, emphasizing 
the need for effective data preprocessing in prediction 
models. This study introduces a decomposition 
algorithm for preprocessing, designed to reduce data 
dimensionality and extract key features from raw input. 
Despite significant advancements in natural language 
processing and computer vision via decomposition 
algorithms and deep learning, air quality time-series 
forecasting has seen limited progress in this regard. The 
primary aim of this paper is to present a novel predictive 
model that harnesses the benefits of EEMD, VMD, and 
LSTM. Decomposition algorithms can help disentangle 
complex air quality data into meaningful components, 
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aiding in the identification of long-term trends, seasonal 
variations, and irregular patterns. Meanwhile, deep 
learning techniques, like recurrent neural networks 
(RNNs) or long short-term memory (LSTM) networks, 
can capture intricate temporal dependencies in the 
data, enabling more accurate and timely predictions of 
air quality levels. This combination of approaches can 
significantly enhance our ability to forecast air quality, 
benefiting public health and environmental management. 
Our analysis of Ozone data from nine stations in Nanjing 
has led to the following conclusions:

The integration of VMD and EEMD decomposition 
into various frequency components notably improved 
ozone prediction accuracy when utilized as input for 
the LSTM model. 

 – Based on historical data, LSTM’s hidden layer 
neural units were selected automatically, facilitating 
predictions of both short-term and long-term 
trends. Hidden layer neural units in Long Short-
Term Memory (LSTM) networks are automatically 
determined through training on historical data.  
The network adjusts the number of units in these 
layers during training to capture the relevant 
patterns in the data, enabling it to predict both short-
term and long-term trends effectively. This dynamic 
adjustment is a key feature of LSTMs, as it allows the 
network to adapt to the complexity of the underlying 
temporal dependencies in the dataset.

 – The hybrid VMD-CNN-LSTM model put forth in 
this study outperforms other models, showing a 
high degree of fit between real and predicted values. 
This approach has proven effective in accurately 
forecasting AQI (Air Quality Index) in practical 
scenarios. 

 – Predicting future ozone levels, affected by intricate 
factors like humidity and weather conditions, 
poses a challenge. Future research may benefit 
from integrating the proposed model with these 
multidimensional complex influencing factors to 
improve overall forecasting effectiveness.

 – Future work could consider exploring optimal 
ensemble models for the decomposed modes, 
optimal ensemble model refers to a combination 
of multiple prediction models, each trained on a 
specific mode obtained through data decomposition. 
These ensemble models are designed to leverage 
the strengths of individual mode-specific models, 
enhancing predictive accuracy and robustness by 
effectively blending their forecasts. The goal is to 
harness the collective predictive power of these 
models to improve the overall quality of predictions, 
particularly in scenarios involving multifaceted 
and complex data patterns, rather than using a 
simple addition approach. Moreover, developing an 
intelligent forecasting system and smart decision-
making system for ozone monitoring could help in 
devising appropriate management policies based on 
forecasted outcomes. However, while the proposed 
VMD-CNN-LSTM method holds potential in 

enhancing ozone prediction accuracy, several 
limitations must be acknowledged:

 – Data Availability: The method’s efficacy is closely 
tied to the availability of accurate and comprehensive 
ozone data. Insufficient or inconsistent data can limit 
the model’s performance and applicability. 

 – Parameter Selection: Proper selection of parameters 
like the decomposition level, penalty factor, and 
network architecture is crucial in the VMD-CNN-
LSTM method. Inappropriate parameter selection 
can lead to inferior results and may necessitate 
manual tuning. Robust optimization techniques 
can be used for automated parameter selection. 
These techniques play a critical role in fine-tuning 
model parameters to achieve optimal predictive 
performance. By automating this process, we 
ensure that our models adapt effectively to the  
data, resulting in more accurate and reliable 
predictions.

 – Interpretation Complexity: The multistage process 
of decomposition, prediction, and recombination 
in the VMD-CNN-LSTM method can complicate 
interpretation and understanding of inherent data 
patterns and relationships. Decomposition separates 
the data into distinct components, prediction models 
operate on these components individually, and 
recombination integrates their predictions. This 
complexity can make it challenging to directly 
interpret the final prediction in terms of the 
original data, as the influence of each component 
on the overall prediction may not be immediately 
transparent. Therefore, understanding the intricate 
relationships among these stages becomes crucial for 
meaningful interpretation. 

 – Sensitivity to Outliers and Noise: Like any predictive 
model, the VMD-CNN-LSTM method could be 
sensitive to data outliers and noise, possibly affecting 
prediction accuracy and necessitating additional 
preprocessing or outlier detection techniques. 

 – Generalization to Other Locations: The method’s 
performance may vary when applied to ozone 
data from different geographical locations or 
cities with distinct environmental conditions, 
potentially requiring custom adjustments for optimal 
performance. 

 – Computational Complexity: The implementation 
of the VMD-CNN-LSTM method could be 
computationally intensive, particularly with larger 
datasets or lengthy time series, requiring adequate 
computational resources and efficient strategies 
for practical application. By streamlining the 
computational demands of the modeling process, 
we can achieve faster predictions and reduce 
resource requirements, making the approach more 
feasible for real-time or large-scale applications. 
This optimization enhances the model’s efficiency 
and usability, which is particularly valuable in 
operational settings, such as air quality management 
or environmental monitoring.
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 – Limited Consideration of External Factors: The 
VMD-CNN-LSTM method mainly focuses on 
decomposing the ozone time series and capturing 
its inherent features, often not considering external 
factors like meteorological conditions, air pollution 
sources, or human activities. Including such factors 
may improve the model’s predictive capabilities.
Furthermore, the method suggested in this research 

paper can be expanded to encompass additional areas 
of energy prediction, such as forecasting crude oil 
prices and wind speeds. By refining this approach and 
broadening its applications, we can enhance predictions 
and decision-making processes in various sectors, 
thereby leading to improved management strategies and 
better resource utilization.
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